
C10552: Intro to
Computation

Lecture 2
July 17, 2016

Lecture 1 Recap

- Loops are useful for repeating code
for i in range(10):
 print i

- If statements are useful for conditional code
if current_temp > 80:
 print “It’s really hot out there!”

Lecture 2 Overview

- HW solutions
- One more type of loop: while

- “Run while condition is true”

- Lists
- Functions
- Live coding

Homework: finding prime divisors

The following paragraph is an excerpt from a book published
in 1874:

Can the reader say what two numbers multiplied together will
produce the number 8,616,460,799? I think it unlikely that
anyone but myself will ever know; for they are two large prime
numbers, and can only be rediscovered by trying in succession a
long series of prime divisors until the right one be fallen upon.

Find these two numbers.

Homework: finding prime divisors

Plan for the code:

- Use the writer’s suggestion: try every possible number!

Homework: finding prime divisors

Plan for the code:

- Use the writer’s suggestion: try every possible number!
- If any number less than 8,616,460,799 divides it evenly,

print it.

Homework: finding prime divisors

Plan for the code:

- Use the writer’s suggestion: try every possible number!
- If any number less than 8,616,460,799 divides it evenly,

print it.

- We’ll need…

Homework: finding prime divisors

Plan for the code:

- Use the writer’s suggestion: try every possible number!
- If any number less than 8,616,460,799 divides it evenly,

print it.

- We’ll need… a for loop, an if statement, and the modulo
operator

Live coding!

Plan for the code:

- Use the writer’s suggestion: try every possible number!
- If any number less than 8,616,460,799 divides it evenly,

print it.

- We’ll need… a for loop, an if statement, and the modulo
operator

Live coding!

>>> for i in xrange(1, 8616460799):
... if 8616460799 % i is 0:
... print i
...
1
89681
96079

The while loop

The while loop

- “Run while condition is true”

red_sox = 2; yankees = 1
while red_sox > yankees:
 print “go sox” # runs forever!

Condition is checked before
each iteration.

The while loop

- “Run while condition is true”

red_sox = 2; yankees = 1
while red_sox > yankees:
 print “go sox” # runs forever!

Anything after # is a comment.
It is for your own eyes.

The computer will ignore it.

The while loop

- “Run while condition is true”

red_sox = 2; yankees = 1
while red_sox > yankees:
 print “go sox” # runs forever!

- While loops do not have a predetermined number of
iterations. (unlike for loops)

Anything after # is a comment.
It is for your own eyes.

The computer will ignore it.

The while loop: example

- What is the output of the following code?
n = 10
while n < 100:
 n = n * 2
 print n

The while loop: example

- What is the output of the following code?
n = 10
while n < 100:
 n = n * 2
 print n
20
40
80
160

The while loop: example

- What is the output of the following code?
n = 10
while n < 100:
 n = n * 2
 print n
20
40
80
160 what?

The while loop: example

- What is the output of the following code?
n = 10
while n < 100:
 n = n * 2
 print n
20
40
80
160 what?

Remember that the
condition is

checked before
each iteration!

Lists

- One of the most important tools in programming
- Simple syntax in Python:

my_list = [1,2,3,4,5]
- range(...) is actually a list!

>>> print range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

- You can iterate over lists

Lists

- You can iterate over lists
>>> my_friends = ["jim", "al", "mary"]
>>> for friend in my_friends:
... print "hello", friend
...
hello jim
hello al
hello mary

Lists

- You can iterate over lists
>>> my_friends = ["jim", "al", "mary"]
>>> for friend in my_friends:
... print "hello", friend
...
hello jim
hello al
hello mary

If you are not
iterating over
range(...),
use a descriptive
name instead of
i

Lists

- You can access list elements
>>> my_friends = ["jim", "al", "mary"]
>>> print my_friends[0]
jim
>>> print my_friends[1]
al
>>> print my_friends[2]
mary

Note that numbering
starts from 0

Modifying lists
- You can modify elements in-place

>>> my_friends = ["jim", "al", "mary"]
>>> my_friends[0] = “joe”
>>> my_friends
['joe', 'al', 'mary']

Modifying lists
- You can append to lists

>>> my_friends = ["jim", "al", "mary"]
>>> my_friends.append("alice")
>>> my_friends
['jim', 'al', 'mary', 'alice']

- You can add two lists to each other
>>> your_friends = ["jack", "mary",
"jessica"]
>>> my_friends + your_friends
['jim', 'al', 'mary', 'alice', 'jack',
'mary', 'jessica']

Modifying lists
- You can append to lists

>>> my_friends = ["jim", "al", "mary"]
>>> my_friends.append("alice")
>>> my_friends
['jim', 'al', 'mary', 'alice']

- You can add two lists to each other
>>> your_friends = ["jack", "mary",
"jessica"]
>>> my_friends + your_friends
['jim', 'al', 'mary', 'alice', 'jack',
'mary', 'jessica'] Repetitions are allowed!

Lists are flexible!
- They can include any type of data…

>>> my_favorite_numbers = ["one", 2, 42.0]
- … even other lists…

>>> your_fav_numbers = [5, 100, 65536]
>>> our_fav_numbers = [my_fav_numbers, your_fav_numbers]
>>> our_fav_numbers
[['one', 2, 42.0], [5, 100, 65536]]

- … even themselves!

>>> my_favorite_numbers.append(my_favorite_numbers)
>>> my_favorite_numbers
['one', 2, 42.0, [...]]
>>> my_favorite_numbers[3] is my_favorite_numbers
True

Lists are flexible!
- They can include any type of data…

>>> my_favorite_numbers = ["one", 2, 42.0]
- … even other lists…

>>> your_fav_numbers = [5, 100, 65536]
>>> our_fav_numbers = [my_fav_numbers, your_fav_numbers]
>>> our_fav_numbers
[['one', 2, 42.0], [5, 100, 65536]]

- … even themselves!

>>> my_favorite_numbers.append(my_favorite_numbers)
>>> my_favorite_numbers
['one', 2, 42.0, [...]]
>>> my_favorite_numbers[3] is my_favorite_numbers
True

Lists are flexible!
- They can include any type of data…

>>> my_favorite_numbers = ["one", 2, 42.0]
- … even other lists…

>>> your_fav_numbers = [5, 100, 65536]
>>> our_fav_numbers = [my_fav_numbers, your_fav_numbers]
>>> our_fav_numbers
[['one', 2, 42.0], [5, 100, 65536]]

- … even themselves!

>>> my_favorite_numbers.append(my_favorite_numbers)
>>> my_favorite_numbers
['one', 2, 42.0, [...]]
>>> my_favorite_numbers[3] is my_favorite_numbers
True

Strings: pretty much like lists
- Time to formally define strings!

- You have seen a string before: print “hello world”
- Most of the operations are the same as lists…

>>> my_string = "hello world"
>>> my_string[0]
'h'
>>> your_string = “123”
>>> my_string + your_string
'hello world123'

- … but a string only contains characters, and it cannot be modified in-place

>>> my_string[0] = 'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Strings: pretty much like lists
- Time to formally define strings!

- You have seen a string before: print “hello world”
- Most of the operations are the same as lists…

>>> my_string = "hello world"
>>> my_string[0]
'h'
>>> your_string = “123”
>>> my_string + your_string
'hello world123'

- … but a string only contains characters, and it cannot be modified in-place

>>> my_string[0] = 'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

i.e. string variable

Strings: pretty much like lists
- A string only contains characters, and it cannot be modified in-place

>>> my_string[0] = 'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

- You need to build a new string if you want to modify it
>>> english_word = "hello"
>>> german_word = ""
>>> for letter in english_word:
... if letter is 'e':
... german_word = german_word + "a"
... else:
... german_word = german_word + letter
...
>>> german_word
'hallo'

Functions
- We sometimes have to do the same set of things over, and

over, and over again…
- Functions are a great way to “pack” your code

def my_function(input_value):
Multiplies input_value by 2.

return input_value * 2

Functions
- We sometimes have to do the same set of things over, and

over, and over again…
- Functions are a great way to “pack” your code

def my_function(input_value):
Multiplies input_value by 2.

return input_value * 2

Treat this as a black box.

Functions
- Abstraction: very important concept in coding
- don’t reinvent the wheel!

def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr(ord(letter)+1)

Functions
- Abstraction: very important concept in coding
- don’t reinvent the wheel!

def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr(ord(letter)+1)

You may have no idea what the red outlined text means.
That is fine. You only need to know what this function does.

Functions
- Abstraction: very important concept in coding
- don’t reinvent the wheel!

def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr(ord(letter)+1)

You may have no idea what the red outlined text means.
That is fine. You only need to know what this function does.

Functions
- Let’s test our black box…

>>> shift_letter('a')
'b'
>>> shift_letter('v')
'w'
>>> shift_letter('z')
'{'
>>> shift_letter('d')
'e'
>>> shift_letter('m')
'n'

Functions
- Let’s test our black box…

>>> shift_letter('a')
'b'
>>> shift_letter('v')
'w'
>>> shift_letter('z')
'{'
>>> shift_letter('d')
'e'
>>> shift_letter('m')
'n'

Functions
- Let’s test our black box…

>>> shift_letter('a')
'b'
>>> shift_letter('v')
'w'
>>> shift_letter('z')
'{'
>>> shift_letter('d')
'e'
>>> shift_letter('m')
'n'

Issue: Function does not
return a letter for ‘z’

- Let’s test our black box…
>>> shift_letter('a')
'b'
>>> shift_letter('v')
'w'
>>> shift_letter('z')
'{'
>>> shift_letter('d')
'e'
>>> shift_letter('m')
'n'

Functions

Issue: Function does not
return a letter for ‘z’

Solution: Modify function so
that ‘z’ maps to ‘a’

Functions
def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr(ord(letter)+1)

Functions
def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr(ord(letter)+1)

def shift_letter(letter):
Given a letter, returns the next
letter in the alphabet.

return chr((ord(letter)-97+1)%26+97)
Exercise: understand how this function works.
Hint: ord(‘a’) is equal to 97.
Solution at the end.

Functions
>>> shift_letter('a')
'b'
>>> shift_letter('b')
'c'
>>> shift_letter('z')
'a'
>>> shift_letter('w')
'x'
>>> shift_letter('x')
'y'

Functions
>>> shift_letter('a')
'b'
>>> shift_letter('b')
'c'
>>> shift_letter('z')
'a'
>>> shift_letter('w')
'x'
>>> shift_letter('x')
'y'

All set!

Live coding!

Using shift_letter, write a simple encryption algorithm that
shifts each letter by a given number (not necessarily 1). Assume
the input text is lowercase.

def encrypt(input_text, shift):
Shifts each letter in input_text
by the given shift value.
Returns the new string.

We’re done!
See you next week!

Solution to Exercise
def shift_letter(letter):

ord(...) returns 97 for ‘a’.
Subtract that from letter
to get the alphabetical rank of letter.
Note that this will be using zero-indexing
(i.e. ‘a’ will be 0)
alpha_rank = ord(letter) - 97
shift by 1
new_alpha_rank = alpha_rank + 1
use the modulo operator so 26 maps to 0
new_alpha_rank = new_alpha_rank % 26
ord() and chr() are inverses of each other.
Add the subtracted 97 back and return using chr.
return chr(new_alpha_rank + 97)

